
Pseudocode for InputService.c

This service takes analog inputs from potentiometer and accelerometers and convert the
them into digital, the results of which are obtained by calling the query functions defined
in this service from different services, which act upon these values.

Data private to the module:
MyPriority
CurrentState
NewResult
Result
Converting// this is a flag to indicate that the AD conversion is in progress

Define query functions for:
RA0 // left accelerometer X value
RA3 // right accelerometer X value
RA7 // tilt sensor for pairing
RB5 // for potentiometer team select

Function : bool InitInputService(uint8_t Priority)
Save MyPriority in Priority
Set the ports and Pins for analog inputs
Initialise ADC hardware by setting ADCON0 to 0x01 and ADCON1 to 0
Set the clock in ADCON1 by setting BIT5HI and BIT7HI for FOSC/32 //this is the conversion
clock
Initialize the read_timer to read values from the analog inputs
Set CurrentState to Reading
Post ES_Init to itself

Function : bool PostInputService(ES_Event_t ThisEvent)
Return PostToService

Function : ES_Event_t RunInputService(ES_Event_t ThisEvent)
Set ReturnEvent to ES_NO_EVENT

If CurrentState is Reading: //reading is the only state in this state machine

If the event is ES_TIMEOUT and param is Read_Timer
 If Converting_flag for RA0 is off
 Configure ADCON0 for RA0
 write blocking code for 7.6us
 make Converting_flag for RA0 as high
 clear ADRESH and ADRESHL
 set the Go/NotDone bit
 write blocking code for 20us for conversion
 endif

 if converting_flag for RA0 is high //ready for read
 Initialize New_Result_RA0 to 0
 Read ADRESH into upper 8 bits of New_Result
 Read ADRESL into Lower 8 bits of New_result
 Take average of Result and New_Result and save in Result //this
implements moving average of the result values
 Configure ADCON0 for RA3
 //no need to write 7.6us blocking code after this as there are a
number of instructions. If response is slow (updating values slowly), add blocking code
 Set the Converting_Flag for RA3 as high
 Set the Go/Not Done bit to start conversion
 Write blocking code for 20 us for capacitor charging.
 endif

 if converting_flag for RA3 is high //ready for read
 Initialize New_Result_RA3 to 0
 Read ADRESH into upper 8 bits of New_Result
 Read ADRESL into Lower 8 bits of New_result
 Take average of Result and New_Result and save in Result //this
implements moving average of the result values
 Configure ADCON0 for RA5
 //no need to write 7.6us blocking code after this as there are a
number of instructions. If response is slow (updating values slowly), add blocking code
 Set the Converting_Flag for RA7 as high
 Set the Go/Not Done bit to start conversion
 Write blocking code for 20 us for capacitor charging.
 endif

 if converting_flag for RA7 is high //ready for read
 Initialize New_Result_RA07to 0
 Read ADRESH into upper 8 bits of New_Result
 Read ADRESL into Lower 8 bits of New_result
 Take average of Result and New_Result and save in Result //this
implements moving average of the result values
 Configure ADCON0 for RB5
 //no need to write 7.6us blocking code after this as there are a
number of instructions. If response is slow (updating values slowly), add blocking code
 Set the Converting_Flag for RB5 as high
 Set the Go/Not Done bit to start conversion
 Write blocking code for 20 us for capacitor charging.
 endif

 If Converting_flag for RB5 is 1
 Turn it flag off
 Read the result
 Take average and store in Result
 Endif

Endif

If default state
 Break

Function : uint16_t QueryRA0(void)// will be called by TransmitService
Return Result_RA0

Function : uint16_t QueryRA3(void)// will be called by TransmitService
Return Result_RA3

Function : uint16_t QueryRA7(void)// will be called by TransmitService
Return Result_RA7

Function : uint16_t QueryRB5(void)// will be called by TransmitService
Return Result_RB5

